
58 PERVASIVE computing Published by the IEEE CS   n 1536-1268/11/$26.00 © 2011 IEEE

Spotlight
Editor:	Christine	Anthony			n			canthony@computer.org

I n the push to develop smart energy 
systems, designers have increasingly 

focused on systems that measure and 
predict user behavior to effect opti-
mal energy consumption. While such 
focus is an important component in 
these systems’ success, designers have 
paid substantially less attention to the 
people on the other side of the energy 
system loop—the supervisors of power-
generation processes. Out of sight 
and sadly, in terms of technologi-
cal advancements, out of mind, 
many operators perform high-risk 
jobs in data-rich but information-
impoverished settings. 

The Three Mile Island nuclear power 
plant accident in 1979 was caused pri-
marily by operators misunderstand-
ing sensor data in an overwhelmingly 
complex control panel.1 In 2003, oper-
ators in the Northeast couldn’t see or 
understand nearby power grids’ critical 
system states, which ultimately led to 
the largest blackout in North Ameri-
can history, contributing to at least 11 
deaths and costing an estimated US$6 
billion.2 In these high-profile cases, and 
in countless other electric and nuclear 
power plant incidents, a significant 
problem was the lack of explicit design 
to support rapid data aggregation and 
information visualization for opera-
tors’ time-pressured decision making. 

Smart energy systems that lever-
age pervasive computing could add to 
these supervisory control operators’ 
workload. They’ll have to predict pos-

sible power plant load and produc-
tion changes caused by environmental 
and plant events, as well as dynamic 
system adaptation in response to con-
sumer behaviors. Contrary to many 
assumptions, inserting more automa-
tion, including distributed sensors and 
algorithms to postprocess data, won’t 
necessarily reduce operators’ workload 
or improve system performance.

SUPERVISORY CONTROL 
AND WORKLOAD 
Current power-generation operations 
are highly automated. In normal, day-
to-day operations, automation adjusts 
system parameters, with human opera-
tors generally acting as system super-

visors, monitoring system states and 
typically intervening in non-monitor-
ing operations, such as responding to 
an alarm, managing a plant start-up, 
or overseeing other off-nominal opera-
tions. Although the system is highly 
automated, these supervisors receive 
little automated decision-making sup-

port, especially in time-critical, system 
anomaly situations. Indeed, although 
digital displays are replacing analog 
ones in current control rooms, many 
plant displays, particularly in the 
nuclear reactor realm, simply replicate 
analog displays, effectively keeping 
1960s-era control rooms’ look and feel.

Central to a system control para-
digm with high automation levels is 
human supervisory control (HSC), 
which assumes that a human operator 
will monitor a given system, taking the 
role of system supervisor or manager.3

Again, operators don’t control low-
level system actions, though they can 
intervene when the situation requires. 
This relationship between the system 
and an operator is called human on the 
loop, rather than human in the loop, 
directing focus away from constant, 
direct control and toward supervisory 
control. 

Figure 1 depicts an HSC concep-
tual model with two human operators 
controlling two plants.4 This model 
indicates that the automated system is 
responsible for controlling the physi-
cal system (labeled “Plant”). Human 
operators supervise and interact with 
the system only through automation. 
In addition to supervising the plant, 
human operators are responsible for 
monitoring and synthesizing different 
types of information coming from the 
smart-grid system to ensure safe and 
efficient plant operation. 

Introducing pervasive computing 
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in smart-grid settings could increase 
supervisory control operators’ work-
load, especially those without any 
advanced decision support. A seem-
ingly reasonable solution is to use more 
automation in grid management. Auto-
mation is commonly introduced into 
HSC systems to reduce the likelihood 
of operator error by reducing operator 
workload. However, because increased 
automation often just changes the 
nature of the work, this relationship 
isn’t universally true.5

Raja Parasuraman and his col-
leagues reviewed several studies that 
suggest aircraft cockpit automation 
has actually increased—rather than 
decreased—operator workload, as 
intended.6 Interestingly, little evidence 
supports the idea that operators will 
delegate tasks to automation when 
workload is high.7,8 Whether we can 
generalize these relationships to the 
power-generation domain is unclear. 
However, several similarities exist 
between automated aircraft control and 
power-generation systems. Monitoring 
an aircraft on autopilot contains similar 
tasks as monitoring a power-generation 
system. Alarms or warnings activate 
when the system reaches a state outside 
predefined parameters, and operators 
are then expected to take over some 
level of control of the system, usually 
with increased time criticality and seri-
ous consequences if mistakes are made.

The Three Mile Island accident and 
the 2003 Northeast blackout required 
operators to move from a monitoring 
state to an emergency-action mode with 
significant time pressure. In both inci-
dents, operators’ lack of understanding 
of the automation, often called mode 
confusion, exacerbated the problem. 
Mode confusion occurs when an HSC 
operator attempts to take control of a 
highly automated system but doesn’t 
understand the current automation 
mode, including its objectives. In both 
aviation and power-generation systems, 
this lack of understanding has caused 
catastrophic human-system failure 
because of confusion over who is in 

control, especially when an operator’s 
desired goal state differed from that of 
the automated system. 

In smart energy system development, 
the question remains of how power 
plant supervisors will respond to the 
inevitable addition of automation. HSC 
operators will need to understand how 
a smart energy management system 
could affect the safety and efficiency of 
power-generation processes. Significant 
automation will be necessary to both 
manage these processes and represent 
data so the operator understands what 
the automation is doing. Such nested 
automation layers increase system 
opacity, and this lack of transparency, 
including a lack of sufficient and intel-
ligible feedback, is a causal factor of 
mode confusion.5,6

Smart energy system designers must 
consider the unintended consequences 
of possible mode confusion and 
increased workload for HSC opera-
tors caused by increased automation, 

particularly in emergency scenarios. 
This requires more advanced display 
technology in the form of integrated 
software-decision-support tools that 
leverage more advanced informa-
tion visualization and data fusion 
techniques for both current and pre-
dicted state representations. Further-
more, smart energy system design and 
operation will require sociotechnical 
changes; organizational and regula-
tory policies and procedures must 
be updated or changed outright. For 
example, it remains unclear how 
smart-grid technologies meant to 
improve efficiency—but ultimately 
linked to power-generation safety—
will influence operating procedures 
and certifications.

HUMAN OVERSIGHT OF 
AUTOMATED PLANNING
The assumption that increased automa-
tion can reduce operator workload in 
smart energy systems is not only naïve 
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Figure 1. Human supervisory control (HSC) model for power-generation systems. 
Two power plants are connected through a smart grid via two HSC networks. 
Automation controls the actual plant processes; however, in future smart grids, a 
human supervisor in each plant will make changes on the basis of not only local plant 
information but also predictive demand models and other plants’ real-time changes.
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in terms of workload management but 
also ignores the critical role that the 
human operator plays in supervisory 
control systems. Humans can apply 
reasoning in situations in which auto-
mation can’t. 

A critical aspect in integrated socio-
technical system design with significant 
embedded autonomy is role alloca-
tion—who (automation and/or human) 
should perform which functions and 
when. According to early research 
examining human-computer alloca-
tion in the air traffic control domain, 
humans and computers possess the 
respective strengths listed in Table 
1, known as the Fitts list.9 This early 
attempt at role allocation for humans 
and computers recognized that auto-
mation can support—not necessarily 
replace—human operators in large-
scale computational decision-making 
tasks. 

As Table 1 depicts, algorithms can 
execute repeatable, precise, and speedy 
computations, which is ideal for com-
plex optimization problems such as 
those inherent in pervasive computing 
and smart-grid environments. How-
ever, automation can be inflexible and 
unable to adapt to changing situations. 
Though computer optimization algo-
rithms are fast and can handle complex 
computation far better than humans, 
they’re notoriously “brittle” in that they 
only take into account those quantifi-
able variables identified as critical dur-
ing the design stages.10,11

In contrast, humans can improvise, 

learn, and reason inductively, which 
are precisely the skills required to 
adapt to unexpected circumstances. 
This type of problem solving is called 
knowledge-based reasoning, during 
which humans make decisions under 
novel and uncertain situations—
attributes inherent in supervisory con-
trol scenarios.12 In terms of managing 
the large data streams that smart-grid 
environments will generate, automation 
will be critical in handling the bulk of 
problem solving and system manage-
ment. However, as the 2003 Northeast 
blackout illustrates, even highly auto-
mated systems can encounter dynamic 
and unexpected variables that designers 
don’t anticipate, which can ultimately 
lead to catastrophe. So, whereas smart 
grids will be highly automated, with 
embedded complex algorithms to bal-
ance power input and output across 
a network, they won’t be completely 
automated, primarily due to the inher-
ent uncertainty in both the environment 
and the algorithms themselves.

Although much supervisory control 
literature has focused on keeping the 
human in the loop for potential inter-
ventions for low-probability events such 
as a blackout, we know significantly less 
about how human operators can pro-
vide value in assisting embedded algo-
rithms to optimize system performance, 
which is the crux of smart-grid opera-
tions. For smart energy systems, every 
consumer represents a node that might 
not always behave in an expected man-
ner, which can cause problems when 

expectations and forecasts don’t match 
actual operating conditions. Given the 
complexity of a large problem space 
with layers of uncertainty, it’s unclear 
whether algorithms will always perform 
optimally in all conditions across what 
is effectively a decentralized network. 
Little research has examined how oper-
ators in decentralized energy networks 
can aid algorithms in optimizing sys-
tem performance. But, recent research 
in supervisory control of unmanned 
vehicles sheds light on the capabilities of 
humans working collaboratively with 
algorithms to achieve superior system 
optimization performance.

The US military envisions networks 
of decentralized unmanned vehicles 
(including air, ground, sea surface, 
and subsurface) that work together, 
with a human on the loop, to conduct 
resource allocation missions such as 
using an array of unmanned vehicles to 
search remote, possibly hostile areas for 
enemies or victims. In these networks, 
each unmanned vehicle computes its 
best plan using local negotiation with 
other unmanned vehicles. There’s no 
globally optimal plan because each 
vehicle strives to maintain the best plan 
with possibly limited information. In 
contrast to a centralized approach, this 
decentralized approach protects against 
network vulnerabilities caused by band-
width limitations and avoids reliance on 
specific vehicles for critical tasks. 

These decentralized network attri-
butes have direct mappings in smart-
grid energy environments, wherein 
utilities could create smaller, decen-
tralized spheres of localized smart-
grid control, possibly managed by 
home and building owners. Similar to 
the decentralized unmanned vehicle 
network, these smaller spheres could 
allow for local resource optimization 
without requiring more complex and 
resource-intensive globally optimal net-
work solutions at substations or utility-
managed command centers. However, 
such nodes of local control still require 
some supervisory oversight, particu-
larly in anomalous situations, such 

TABLE 1 
The Fitts list for human-computer role allocation.

Humans are better at Computers are better at

Perceiving	patterns Responding	quickly	to	control	tasks

Improvising	and	using	flexible	procedures Repetitive	and	routine	tasks

Recalling	relevant	facts	at	the	appropriate	
time

Handling	simultaneous	complex	tasks

Reasoning	inductively Reasoning	deductively

Exercising	judgment Fast	and	accurate	computation
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as major power outages and extreme 
weather conditions.

Because relatively high automation 
levels are essential to operate these 
decentralized networks, and humans are 
necessary for system oversight, questions 
remain of just how much human collab-
oration should be allowed and what the 
impact of human interaction could be 
for such a system. To partially address 
these issues, an experiment examined 
how well a decentralized vehicle net-
work would perform without human 
oversight, as compared to a system with 
a human operator who was allowed to 
tweak the automation’s resource alloca-
tion and scheduling plans.13

In this experimental setting, a net-
work of five unmanned vehicles was 
tasked with searching as much of a 
predetermined area as possible, and 
tracking targets using a mixed-integer 
linear programming algorithm. In the 
automation-only condition, the system 
generated all the plans, which were 
automatically approved, and a human 
operator never changed the tasking or 
rate at which it generated plans. In the 
second condition with both humans 
and automation, humans could update 
the algorithm’s tasking or replan more 
often if they thought the automation 
wasn’t performing adequately. 

Figure 2 demonstrates how much 
value the human provided in terms of 
the two primary dependent measures—
percentage of area covered and num-
ber of targets found. Investigation of 
three different workload levels (30, 45, 
and 120 seconds between replanning 
intervals) determined how both the 
automated planners and the operators 
would respond under changing work-
load conditions. 

As Figure 2 shows, letting a human 
operator evaluate and occasionally 
change an automated solution allowed 
the system to perform substantially 
better than if the automation was left 
alone. Of the six conditions in Figure 
2, the 120-second interval for the area-
searched metric was the only automa-
tion approach statistically comparable 

to the human-assisted mode, suggest-
ing that the longer intervals between 
replanning benefitted the automation. 
For the targets-found metric, the col-
laboration between the human and the 
automation resulted in more than a 20 
percent increase across all factor levels. 

Although these results are for a 
decentralized unmanned vehicle plan-
ning and scheduling problem, they 
highlight the importance of under-
standing the benefit of human interac-
tion in systems that use automation for 
decentralized scheduling and resource 
allocation, which is likely the future 
of smart grids. The human operator 
was critical in this domain because 
of the uncertainty inherent in the sys-
tem. The autonomous planners on the 
unmanned vehicles operated with a 
priori cost functions coded by the algo-
rithm designers, which theoretically 
generated an optimal solution, but in 
reality could be improved by occasional 
human judgment. 

This temporal component of human 
interaction is important because previ-
ous related research has shown that if 
operators intervene too much in such 
distributed planning systems, overall 

system performance could suffer.14

Determining a robust range of help-
ful human interaction is key. In addi-
tion, whereas military command and 
control settings possibly contain more 
uncertainty than power-generation set-
tings, many sources of uncertainty in 
smart-grid system management—such 
as weather, customer behaviors, algo-
rithm design, and system failures—can 
lead to similar problems.

I n the envisioned future of smart 
energy systems, pervasive comput-

ing systems will measure and infer 
user behavior to mitigate and optimize 
energy use. Such systems will require 
significant embedded algorithms as well 
as some level of human supervisory con-
trol—the proverbial men and women 
behind the curtain. In domains in which 
uncertainty exists, including probabilis-
tic algorithms and behavioral inference, 
considering the human role not only as a 
monitor of anomalous system states but 
also a collaborator is critical.  

It’s generally recognized that in 
power-generation environments, auto-
mation is necessary in safety-critical 
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Figure 2. Value added by letting humans work with a planning and scheduling 
algorithm. (a) Decreasing workload levels represented by 30-, 45-, and 120-second 
replanning intervals are plotted against the percentage of geographic area that a 
group of unmanned vehicles searched. (b) The same replanning levels are plotted 
against the number of targets the unmanned vehicles found. Automation assisted by 
a human operator performed significantly better than the automation alone.
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monitoring tasks such as fault detection, 
situation assessment and diagnosis, and 
response planning.15 Unfortunately, 
no organized effort that we’re aware 
of focuses on developing algorithms 
and associated decision tools to sup-
port supervisors managing dynamic 
and adaptive smart grids. Such research 
is necessary to determine the required 
degree of interactivity between supervi-
sory control operators and a pervasive 
computing system’s automation, how 
to manage the voluminous data streams 
that smart energy systems will gener-
ate, and how to balance the competing 
objectives of safety and optimal energy 
production.
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